Al and Brain: Copy or Competitor?

From "Ghost in the Machine" to Alien Intelligence: Why Al Simulates but Doesn't "Think™
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From the lllusion of Similarity to the Reality of ""Alien Intelligence': A Deep Dive into the Engine Room
of Thought.

It is tempting to see the ghost in the machine. When ChatGPT writes a poetic text or solves complex logic puzzles,
we tend to humanize this performance. We speak of "learning," "understanding," or "feeling." However, a current
analysis of cognitive architectures reveals a completely different picture: We are not dealing with a replication of
the human mind, but with a "convergence of surface at divergence of depth." (Weizenbaum, 1966; Reeves &
Nass, 1996; Epley et al., 2007; Gray et al., 2007; Waytz et al., 2010; Shanahan, 2022)

What does this mean? On the surface, the results look similar. In the "engine room," however, completely
different mechanisms are at work. While Al is a high-performance statistical machine, the human brain remains
a biological miracle of efficiency and meaning. Here is the truth about the differences that often get lost in the
hype. (Hasson et al., 2020; Lake et al., 2017; Marcus, 2018)

1. The 20-Watt Miracle vs. The Power Plant: How We Really Learn

The perhaps most fundamental difference lies in the economy of thought. Your brain requires about 20 watts of
energy—as much as a dim light bulb—to create world models, process feelings, and plan complex actions. Modern
Al models, on the other hand, consume the electricity of entire small towns to simulate similar outputs. Yet, it is

not just about electricity; it is about the method. (Attwell & Laughlin, 2001; Levy & Calvert, 2021; Strubell et
al., 2019; Schwartz et al., 2020; Patterson et al., 2021)
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Hebbian Plasticity vs. Backpropagation

In your head, the rule applies: "Cells that fire together, wire together" (Hebbian learning). Learning happens
locally, directly at the synapse, often asynchronously and extremely efficiently. If you burn your hand on a hot
stove once, your brain learns immediately (One-Shot Learning). Artificial neural networks, conversely, use
Backpropagation (error back-transmission). They require a global error signal that is mathematically expensively
calculated back through hundreds of layers. This is biologically absolutely implausible—your brain has no "wires"
to send errors backwards through the entire network. This makes Al extremely "data-hungry": It needs thousands
of examples where one suffices for you. (Hebb, 1949; Bi & Poo, 1998; Lake et al., 2015; Rumelhart et al., 1986;
Lillicrap et al., 2020; Marcus, 2018)



2. The Master of Fillers: Why Als Are Only Acting

Here we arrive at a point that is often misunderstood: What is the Al actually doing when it "thinks"? Science
calls this interpolation. Imagine you have a sheet of paper full of dots (data). The Al is a master at drawing a
complex curve that connects these dots perfectly. This is called "Direct Fit." Within the known space (the training
data), it is unbeatable. (Hasson et al., 2020)

The Problem of Extrapolation

But what happens when we leave the sheet of paper? Here, the machine fails. The human brain is a master of
extrapolation. We understand the rules behind the dots. Example: If you know what "to walk™ means and what
"slowly" means, you immediately understand the concept of "walking slowly"—even if you have never seen it.
We abstract principles. The Al reality: It often only memorizes statistical patterns. If forced to operate outside
its trained data (Out-of-Distribution), its performance often collapses dramatically. It is, to put it provocatively,
a highly intelligent copy machine that calculates probabilities but understands no causalities. (Lake et al., 2017;
Marcus, 2018; Hendrycks & Dietterich, 2019; Geirhos et al., 2020; Pearl & Mackenzie, 2018; Chollet, F. 2019).
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3. Remix vs. Revolution: Where the Spark is Missing

When Al paints pictures or composes music, it appears creative. But is it? We must distinguish between two types
here: (Boden, 2004)
e Combinatorial Creativity: Re-connecting the known. Here, the Al is brilliant. It can mix the style of Van
Gogh with Cyberpunk because it possesses huge databases. (Boden, 2004)
¢ Transformational Creativity: Breaking the rules to create something fundamentally new (a paradigm
shift). (Boden, 2004)

True human insight—the famous "Aha!" moment—is neurologically measurable (a gamma burst in the brain) and
emotionally rewarding (dopamine). It is a phase transition, a sudden restructuring of the problem. Als do not
experience "Ahal" moments. They merely optimize an error function (Loss Function) downward. They lack the
will to break, the rebellion against the rule, and the intrinsic curiosity that drives us to explore things that have
no immediate utility. (Jung-Beeman et al., 2004; Kounios & Beeman, 2009; Schultz, 1998)



4. The Simulation of Emotion: Why ChatGPT Does Not Cry With You

Probably the most critical area is empathy. We increasingly interact with chatbots that sound "understanding."
Yet here lurks a danger. Empathy is not a calculation task. In humans, empathy is "embodied."” (Rizzolatti &
Craighero, 2004; Barrett, 2017; Craig, 2009; Critchley & Garfinkel, 2017; Bender, E. M., et al. 2021)

e Mirror Neurons: When we see that someone is in pain, similar areas in our brain fire as if we were in
pain ourselves. We simulate the other in our own body. (Rizzolatti & Craighero, 2004)

e Interoception: We use our gut feeling, our heartbeat, our own physique to feel. (Craig, 2009; Critchley
& Garfinkel, 2017; Barrett, 2017)

The Al lacks this body. It has no hormones, no pain, no fear of death. When an Al says: "l understand that you
are sad," this is a linguistic simulation. They are vectors in a high-dimensional space that statistically likely follow
your input. There is no one there who feels. The phenomenology (the subjective experience) is missing. The use
of "empathic Al" in therapy or care therefore carries the risk of a gigantic deception: We project feelings onto
something that is mathematically incapable of reciprocating them. (Barrett, 2017; Bickmore & Picard, 2005;
Fitzpatrick et al., 2017)

Conclusion: Alien Intelligence

The analysis clearly shows: We should stop measuring Al by the human standard. It is not a worse version of a
brain and also not a better one. It is an "Alien Intelligence." It optimizes instead of understanding. It interpolates
instead of extrapolating. It simulates instead of feeling. That makes it a powerful tool of efficiency, but the
domains of true insight, radical creativity, and social resonance remain—for now—our biological privilege.
(Hasson et al., 2020; Marcus, 2018; Shanahan, 2022)
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